? ??????????????Lady Like? ????? ?? ???Rating: 5.0 (1 Rating)??3 Grabs Today. 1914 Total Grabs. ??????Prev
iew?? | ??Get the Code?? ?? ?????Outside Our Window? ????? ?? ???Rating: 5.0 (1 Rating)??3 Grabs Today. 1819 Total Grabs. ??????Preview?? | ??Get the Code?? ?? ???????Japanese Garden BLOGGER TEMPLATES AND TWITTER BACKGROUNDS ?

Sunday, October 11, 2009

BraIn~



~The brain is the center of the nervous system in all vertebrate, and most invertebrate, animals. Some primitive animals such as jellyfish and starfish have a decentralized nervous system without a brain, while sponges lack any nervous system at all. In vertebrates, the brain is located in the head, protected by the skull and close to the primary sensory apparatus of vision, hearing, balance, taste, and smell.


~Brains can be extremely complex. The cerebral cortex of the human brain contains roughly 15–33 billion neurons depending on gender and age,linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells.


~The most important biological function of the brain is to generate behaviors that promote the welfare of an animal. Brains control behavior either by activating muscles, or by causing secretion of chemicals such as hormones. Even single-celled organisms may be capable of extracting information from the environment and acting in response to it. Sponges, which lack a central nervous system, are capable of coordinated body contractions and even locomotion.In vertebrates, the spinal cord by itself contains neural circuitry capable of generating reflex responses as well as simple motor patterns such as swimming or walking. However, sophisticated control of behavior on the basis of complex sensory input requires the information-integrating capabilities of a centralized brain.

~Despite rapid scientific progress, much about how brains work remains a mystery. The operations of individual neurons and synapses are now understood in considerable detail, but the way they cooperate in ensembles of thousands or millions has been very difficult to decipher. Methods of observation such as EEG recording and functional brain imaging tell us that brain operations are highly organized, but these methods do not have the resolution to reveal the activity of individual neurons.

H1N1

  • Influenza A (H1N1) virus is a subtype of influenzavirus A and the most common cause of influenza (flu) in humans. Some strains of H1N1 are endemic in humans and cause a small fraction of all influenza-like illness and a large fraction of all seasonal influenza. H1N1 strains caused roughly half of all human flu infections in 2006.Other strains of H1N1 are endemic in pigs (swine influenza) and in bird
  • Influenza A virus strains are categorized according to two proteins found on the surface of the virus: hemagglutinin (H) and neuraminidase (N). All influenza A viruses contain hemagglutinin and neuraminidase, but the structures of these proteins differ from strain to strain, due to rapid genetic mutation in the viral genome.
    Influenza A virus strains are assigned an H number and an N number based on which forms of these two proteins the strain contains. There are 16 H and 9 N subtypes known in birds, but only H 1, 2 and 3, and N 1 and 2 are commonly found in humans.

  • In the 2009 flu pandemic, the virus isolated from patients in the United States was found to be made up of genetic elements from four different flu viruses – North American swine influenza, North American avian influenza, human influenza, and swine influenza virus typically found in Asia and Europe – "an unusually mongrelised mix of genetic sequences." This new strain appears to be a result of reassortment of human influenza and swine influenza viruses, in all four different strains of subtype H1N1.
  • Preliminary genetic characterization found that the hemagglutinin (HA) gene was similar to that of swine flu viruses present in U.S. pigs since 1999, but the neuraminidase (NA) and matrix protein (M) genes resembled versions present in European swine flu isolates. The six genes from American swine flu are themselves mixtures of swine flu, bird flu, and human flu viruses.While viruses with this genetic makeup had not previously been found to be circulating in humans or pigs, there is no formal national surveillance system to determine what viruses are circulating in pigs in the U.S.

  • On June 11, 2009, the WHO declared an H1N1 pandemic, moving the alert level to phase 6, marking the first global pandemic since the 1968 Hong Kong flu.